Respuesta :

[tex]\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}\quad \begin{cases} r=radius\\ -----\\ r=3 \end{cases}\implies V=\cfrac{4\pi 3^3}{3}\implies V=36\pi [/tex]
ANSWER

The volume of the given sphere is

[tex]36 \pi \: units \: {}^{3} [/tex]

EXPLANATION

The volume of a sphere is calculated using the formula,

[tex]Volume= \frac{4}{3} \pi \: {r}^{3} [/tex]


Where
[tex]r = 3 \: \: units \: [/tex]
is the radius of the sphere.



We substitute this value into the formula to obtain,


[tex]Volume= \frac{4}{3} \pi \: {3}^{3} [/tex]


This simplifies to,

[tex]Volume= 4 \pi \times {3}^{2} [/tex]


This will give us,

[tex]Volume= 4 \pi \times 9[/tex]


We finally multiply out to obtain,

[tex]Volume= 36\pi \: units \: {}^{3} [/tex]

The correct answer is therefore B.