Respuesta :

C would be your answer

Answer : The correct option is, (C) [tex]y=-\frac{x}{2}[/tex]

Step-by-step explanation :

The general form for the formation of a linear equation is:

[tex](y-y_1)=m\times (x-x_1)[/tex] .............(1)

where,

x and y are the coordinates of x-axis and y-axis respectively.

m is slope of line.

First we have to calculate the slope of line.

Formula used :

[tex]m=\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]

Here,

[tex](x_1,y_1)=(-8,4)[/tex] and [tex](x_2,y_2)=(-6,3)[/tex]

[tex]m=\frac{(3-4)}{(-6-(-8))}[/tex]

[tex]m=\frac{-1}{2}[/tex]

Now put the value of slope in equation 1, we get the linear equation.

[tex](y-y_1)=m\times (x-x_1)[/tex]

[tex](y-4)=\frac{-1}{2}\times (x-(-8))[/tex]

[tex](y-4)=\frac{-1}{2}\times (x+8)[/tex]

[tex]y-4=-\frac{x}{2}-\frac{8}{2}[/tex]

[tex]y-4=-\frac{x}{2}-4[/tex]

[tex]y=-\frac{x}{2}-4+4[/tex]

[tex]y=-\frac{x}{2}[/tex]

From the given options we conclude that the option C is an equation of the given line in standard form.

Hence, the correct option is, (C) [tex]y=-\frac{x}{2}[/tex]