Respuesta :
p(x) = 3x + 200
x=4 ⇒ p(4) = 3(4)+200=12+200=212
x=15 ⇒ p(15) = 3(15)+20=45+200=245
n(x) = 200(1.04)^xx
=4 ⇒ n(4) = 200 (1.04)^4 = 233.97
x=15⇒n(15)=200(1.04)^15 = 360.19
Then n(x) has the highest value in 4 years; n(x) has the highest value in 15 years
x=4 ⇒ p(4) = 3(4)+200=12+200=212
x=15 ⇒ p(15) = 3(15)+20=45+200=245
n(x) = 200(1.04)^xx
=4 ⇒ n(4) = 200 (1.04)^4 = 233.97
x=15⇒n(15)=200(1.04)^15 = 360.19
Then n(x) has the highest value in 4 years; n(x) has the highest value in 15 years
Answer:
n(x) has the highest value in 4 years
and n(x) has the highest value in 15 years
Step-by-step explanation:
p(x) = 3x + 200
Putting x=4
⇒ p(4) = 3×4+200
=12+200
=212
Putting x=15
⇒ p(15) = 3×15+200
=45+200
=245
n(x) = [tex]200\times (1.04)^x[/tex]
Putting x=4
⇒ n(4) = [tex]200\times (1.04)^4[/tex]
= 233.97
Putting x=15
⇒n(15)= [tex]200\times (1.04)^{15}[/tex]
= 360.19
On comparing the values of n(x) and p(x) at x=4 and x=15,we get
n(x) has the highest value in 4 years
and n(x) has the highest value in 15 years