Respuesta :
Since the equation is balanced we can use the molar ratios to jump between amounts of substances.
CH4 + 2O2 ---> CO2 + 2 H2O
1.You can use a molar ratio to convert between mols methane to mols CO2:
4.70×10−3 mol CH4 X (1 CO2 / 1 CH4) = 4.7x10^-3 mol CO2 X (44g/1mol) = .2068g CO2
2. You can do the same technique with the water.
4.70×10−3 mol CH4 X (2 H2O / 1 CH4) = .0094 mol H2O X (18g/1mol) = .1692g H2O
3. You can do the same technique with the O2.
4.70×10−3 mol CH4 X (2 O2 / 1 CH4) = .0094 mol O2 X (32g/1mol) = .3008g O2
CH4 + 2O2 ---> CO2 + 2 H2O
1.You can use a molar ratio to convert between mols methane to mols CO2:
4.70×10−3 mol CH4 X (1 CO2 / 1 CH4) = 4.7x10^-3 mol CO2 X (44g/1mol) = .2068g CO2
2. You can do the same technique with the water.
4.70×10−3 mol CH4 X (2 H2O / 1 CH4) = .0094 mol H2O X (18g/1mol) = .1692g H2O
3. You can do the same technique with the O2.
4.70×10−3 mol CH4 X (2 O2 / 1 CH4) = .0094 mol O2 X (32g/1mol) = .3008g O2
Answer:
[tex]m_{H_2O}=1.06x10^{-2}gH_2O[/tex]
Explanation:
Hello,
In this case, when methane undergoes combustion, the reaction is:
[tex]CH_4+2O_2\rightarrow CO_2+2H_2O[/tex]
Thus, by stoichiometry, the mass of yielded water is:
[tex]m_{H_2O}=4.70x10^{-3}gCH_4*\frac{1molCH_4}{16gCH_4}*\frac{2molH_2O}{1molCH_4}*\frac{18gH_2O}{1molH_2O}\\m_{H_2O}=1.06x10^{-2}gH_2O[/tex]
Best regards.