Respuesta :
Answer is: molality is 0,3375 mol/kg.
m(C₆H₁₂O₆) = 48,6 g.
V(H₂O) = 0,800 L · 1000 mL/1L = 800 mL.
d(H₂O) = 1 g/mL.
m(H₂O) = V(H₂O) · d(H₂O).
m(H₂O) = 800 mL · 1 g/mL.
m(H₂O) = 800 g ÷ 1000 g/1kg = 0,8 kg.
n(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 48,6 g ÷ 180,15 g/mol.
n(C₆H₁₂O₆) = 0,27 mol.
b(C₆H₁₂O₆) = n(C₆H₁₂O₆) ÷ m(H₂O).
b(C₆H₁₂O₆) = 0,27 mol ÷ 0,8 kg = 0,3375 mol/kg.
m(C₆H₁₂O₆) = 48,6 g.
V(H₂O) = 0,800 L · 1000 mL/1L = 800 mL.
d(H₂O) = 1 g/mL.
m(H₂O) = V(H₂O) · d(H₂O).
m(H₂O) = 800 mL · 1 g/mL.
m(H₂O) = 800 g ÷ 1000 g/1kg = 0,8 kg.
n(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 48,6 g ÷ 180,15 g/mol.
n(C₆H₁₂O₆) = 0,27 mol.
b(C₆H₁₂O₆) = n(C₆H₁₂O₆) ÷ m(H₂O).
b(C₆H₁₂O₆) = 0,27 mol ÷ 0,8 kg = 0,3375 mol/kg.
Answer:
[tex]m=0.338mol/kg=0.338m[/tex]
Explanation:
Hello,
In this case, since the molality is defined in terms of the moles of solute divided by the kilograms of solvent as shown below:
[tex]m=\frac{mol_{solute}}{V_{solution}}[/tex]
One firstly computed the moles of glucose which acts as the solute as follows:
[tex]mol_{solute}=48.6gC_6H_{12}O_6*\frac{1molC_6H_{12}O_6}{180gC_6H_{12}O_6} =0.27molC_6H_{12}O_6[/tex]
Now, as the density of water is 1.00 g/mL, we conclude we have 0.8 kg of water, therefore, the resulting molality in molar units (m) turns out:
[tex]m=\frac{0.27molC_6H_{12}O_6}{0.8 kg}\\m=0.338mol/kg=0.338m[/tex]
Best regards.