What is the equation of the line, in slope-intercept form, that passes through (3, -1) and (-1,5)?

What is the equation of the line, in standard form, that passes through (4, -3) and is parallel to heline whose equation is 4x + y - 2 = 0?

Given the line 2x - 3y - 5 = 0, find the slope of a line that is perpendicular to this line.

Respuesta :

[tex]m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{5 - (-1)}{-1 - 3} = \frac{5 + 1}{-4} = \frac{6}{-4} = \frac{3}{-2} = -1\frac{1}{2}[/tex]
  y - y₁ = m(x - x₁)
y - (-1) = -1¹/₂(x - 3)
  y + 1 = -1¹/₂(x) + 1¹/₂(3)
  y + 1 = -1¹/₂x + 4¹/₂
      - 1              - 1
         y = -1¹/₂x + 3¹/₂

  4x + y - 2 = 0
            + 2 + 2
       4x + y = 2
4x - 4x + y = -4x + 2
               y = -4x + 2
         y - y₁ = m(x - x₁)
      y - (-3) = -4(x - 4)
         y + 3 = -4(x) + 4(4)
         y + 3 = -4x + 16
             - 3            - 3
               y = -4x + 13

  2x - 3y - 5 = 0
             + 5 + 5
2x - 2x - 3y = -2x + 5
             -3y = -2x + 5
              -3         -3
                y = ²/₃x - 1²/₃
       y - (-3) = -1¹/₂(x - 4)
          y + 3 = -1¹/₂(x) + 1¹/₂(4)
          y + 3 = -1¹/₂x + 6
              - 3              - 3
                y = -1¹/₂x + 3

its b because the others are incorrect