Respuesta :

r(t)=(2t)i+(t²+2)j and r'(t)=2i+2tj.
r(t)=-ar'(t) where a is a scalar
2t=-2a and t²+2=-2at, equating vector components
So t=-a and a²+2=2a², from which a²=2 and a=±√2, making t=±√2.
r(±√2)=±2√2i+4j, (2√2,4) and (-2√2,4).

The points on the curve r(t)=(2t)i+(t2+2)j at which r(t) and r′(t) have opposite direction is [tex](\pm\sqrt{2}, 4 )[/tex]

Given the following vector function

[tex]r(t)=(2t)i+(t^2+2)j[/tex]

If the points on the curve are in opposite directions then

[tex]r(t) = -ar'(t)[/tex]

Get the derivative of r(t)

[tex]r'(t) = 2i + 2tj[/tex]

The vector function becomes:

[tex](2t)i+(t^2+2)j = -a[2i + 2tj][/tex]

[tex]2ti+(t^2+2)j=-2ai-2atj[/tex]

compare the coefficients on both sides

[tex]2ti=-2ai\\t=-a\\[/tex]

Similarly:

[tex]t^2+2=-2at\\Since \ t = -a\\[/tex]

The equation becomes

[tex](-(-a))^2+2=-2a(-a)\\a^2+2= 2a^2\\\\2a^2-a^2=2\\a^2=2\\a=\pm\sqrt{2}[/tex]

Since [tex]t = -a[/tex]

[tex]t=-(\pm\sqrt{2} )\\t=\mp\sqrt{2}[/tex]

Substitute t = ±√2 into r(t)

Recall that

[tex]r(t)=(2t)i+(t^2+2)j\\r(t)=(2( \pm\sqrt{2}))i+(( \pm\sqrt{2})^2+2)j\\r(t) = \pm2\sqrt{2} + 4j\\[/tex]

From the given result we can see that the required point on the curve is [tex](\pm\sqrt{2}, 4 )[/tex]

Learn more here: https://brainly.com/question/13128339

Otras preguntas