Respuesta :
Answer: The required value of [tex]a_{10}[/tex] is 25.
Step-by-step explanation: We are given a sequence whose n-th term is given as follows :
[tex]a_n=3n-5.[/tex]
We are to find the value of [tex]a_{10}.[/tex]
To find the value of [tex]a_{10}.[/tex], we need to put n = 10 in the given expression.
So, substituting n = 10 in the given expression, we get
[tex]a_{10}=3\times 10-5=30-5=25.[/tex]
Thus, the required value of [tex]a_{10}[/tex] is 25.
Answer: The value of [tex]a_{10}=25[/tex]
Step-by-step explanation:
The given sequence : [tex]a_n=3n-5[/tex] .
To find the value of [tex]a_10[/tex] , need to substitute the value n=10 in the above equation , we will get
[tex]a_{10}=3(10)-5[/tex]
Open Parenthesis ,
[tex]a_{10}=3\times10-5[/tex]
Solve product ,
[tex]\Rightarrow\ a_{10}=30-5[/tex]
Solve subtraction,
[tex]\Rightarrow\ a_{10}=25[/tex]
Therefore , the value of [tex]a_{10}=25[/tex]