Respuesta :

For angle G, FH is the opposite leg.
h is the hypotenuse.

The trig ratio that relates the opposite leg and the hypotenuse is the sine.

[tex] \sin \theta = \dfrac{opp}{hyp} [/tex]

[tex] \sin 48^\circ = \dfrac{5}{h} [/tex]

[tex] h = \dfrac{5}{\sin 48^\circ} [/tex]

[tex] h = 6.7 [/tex]

Answer:

h = 6 .7  units.

Step-by-step explanation:

Given  : Triangle .

To find : Find the value of h rounded to the nearest tenth.

Solution : We have given that

Triangle with hypotenuses = h .

Angle  = 48  degree .

Opposite side = 5 .

By the trigonometric ratio : [tex]sin(angle) =\frac{opposite}{hypotenuse}[/tex].

[tex]sin(48) =\frac{5}{h}[/tex].

0.743 =  [tex]\frac{5}{h}[/tex].

On multiplying both sides by h.

0.743 * h = 5

On dividing by 0 .743

h = [tex]\frac{5}{0.743}[/tex]

h = 6.72

Therefore, h = 6 .7 units.