recall that
[tex]\bf r[cos(\theta )+i~sin(\theta )]\quad
\begin{cases}
x=rcos(\theta )\\
y=rsin(\theta )
\end{cases}\implies (x,y)\\\\
-------------------------------\\\\[/tex]
therefore,
[tex]\bf Z=\stackrel{r}{32}\left[cos\left( \stackrel{\theta }{\frac{n}{3}} \right)+i~ sin\left( \stackrel{\theta }{\frac{n}{3}} \right)\right]\qquad
\begin{cases}
r=32\\
\theta =\frac{n}{3}
\end{cases}\implies
\begin{cases}
x=32cos\left( \frac{n}{3} \right)\\\\
y=32sin\left( \frac{n}{3} \right)
\end{cases}
\\\\\\
\left[ 32cos\left( \frac{n}{3} \right)~~,~~ 32sin\left( \frac{n}{3} \right)\right][/tex]