Respuesta :

recall that

[tex]\bf r[cos(\theta )+i~sin(\theta )]\quad \begin{cases} x=rcos(\theta )\\ y=rsin(\theta ) \end{cases}\implies (x,y)\\\\ -------------------------------\\\\[/tex]

therefore,

[tex]\bf Z=\stackrel{r}{32}\left[cos\left( \stackrel{\theta }{\frac{n}{3}} \right)+i~ sin\left( \stackrel{\theta }{\frac{n}{3}} \right)\right]\qquad \begin{cases} r=32\\ \theta =\frac{n}{3} \end{cases}\implies \begin{cases} x=32cos\left( \frac{n}{3} \right)\\\\ y=32sin\left( \frac{n}{3} \right) \end{cases} \\\\\\ \left[ 32cos\left( \frac{n}{3} \right)~~,~~ 32sin\left( \frac{n}{3} \right)\right][/tex]