Divide the following polynomials, then place the answer in the proper location on the grid. Write the answer in descending powers of a.

Divide 5a2 + 6a - 9 into 25a4 + 19a2 - a - 78.


Respuesta :

We divide [tex]25a^4 + 19a^2 - a - 78[/tex] by [tex]5a^2 + 6a - 9[/tex] using the long division algorithm as follows:

                         5a^2 - 6a + 20
                       _____________________
5a^2 + 6a - 9 | 25a^4 + 0a^3 + 19a^2 - a - 78
                      | 25a^4 + 30a^3 - 45a^2
                      |___________________
                      |             -30a^3 + 64a^2 - a - 78
                      |             -30a^3 - 36a^2 + 54a
                      |            ____________________
                      |                         100a^2 - 55a - 78
                      |                         100a^2 + 120a - 180
                      |                         __________________
                                                             -175a + 102


Therefore, [tex]5a^2 + 6a - 9[/tex] divided into [tex]25a^4 + 19a^2 - a - 78[/tex] gives [tex]5a^2 - 6a + 20[/tex] remainder -175a + 102.