Respuesta :

Hello there! Hope I can be of assistance

I assume you mean [tex]\left(\frac{3}{5}y^9\right)^3[/tex]

With this in mind! Let us begin!

[tex]\mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \ \frac{3y^9}{5} \ \textgreater \ \left(\frac{3y^9}{5}\right)^3[/tex]

[tex]\mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} \ \textgreater \ \frac{\left(3y^9\right)^3}{5^3}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}: \left(a\cdot \:b\right)^n=a^nb^n \ \textgreater \ \left(3y^9\right)^3=3^3\left(y^9\right)^3 \ \textgreater \ \frac{3^3\left(y^9\right)^3}{5^3}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}: \left(a^b\right)^c=a^{bc} \ \textgreater \ y^{9\cdot \:3} \ \textgreater \ Refine \ \textgreater \ y^{27} \ \textgreater \ \frac{3^3y^{27}}{5^3}[/tex]

Simply refine it once more
[tex]\frac{27y^{27}}{125}[/tex]

Hope this helps!