What are the coordinates of the centroid of a triangle with vertices P(−4, −1) , Q(2, 2) , and R(2, −3) ?

Enter your answers in the boxes. ( , )

Respuesta :

Answer: The centroid of the triangle PQR is [tex](0,\frac{-2}{3} )[/tex].

Explanation:

It is given that the vertices of the triangle are P(−4, −1) , Q(2, 2) , and R(2, −3).

The formula to find the coordinates of the centroid of a triangle is,

[tex]\text{coordinates of centroid}=(\frac{x_1+x_2+x_3}{3} ,\frac{y_1+y_2+y_3}{3} )[/tex]

We have coordinates of all vertices, so we can directly substitute the values in the above mentioned formula.

[tex]\text{coordinates of centroid}=(\frac{-4+2+2}{3} ,\frac{-1+2+(-3)}{3} )[/tex]

[tex]\text{coordinates of centroid}=(\frac{0}{3} ,\frac{-2}{3} )[/tex]

[tex]\text{coordinates of centroid}=(0,\frac{-2}{3} )[/tex]

Therefore the  coordinates of the centroid of a triangle PQR is [tex](0,\frac{-2}{3} )[/tex].

Answer:

(0,-0.6667)

Step-by-step explanation:


Centroid = ((x1 + x2 + x3)/3, (y1 + y2 + x3)/3)

= ((-4 + (2) + (2))/3, (-1 + (2) + (-3))/3)

= (0/3, -2/3)

= (0, -0.6667)