Respuesta :
Answer: The centroid of the triangle PQR is [tex](0,\frac{-2}{3} )[/tex].
Explanation:
It is given that the vertices of the triangle are P(−4, −1) , Q(2, 2) , and R(2, −3).
The formula to find the coordinates of the centroid of a triangle is,
[tex]\text{coordinates of centroid}=(\frac{x_1+x_2+x_3}{3} ,\frac{y_1+y_2+y_3}{3} )[/tex]
We have coordinates of all vertices, so we can directly substitute the values in the above mentioned formula.
[tex]\text{coordinates of centroid}=(\frac{-4+2+2}{3} ,\frac{-1+2+(-3)}{3} )[/tex]
[tex]\text{coordinates of centroid}=(\frac{0}{3} ,\frac{-2}{3} )[/tex]
[tex]\text{coordinates of centroid}=(0,\frac{-2}{3} )[/tex]
Therefore the coordinates of the centroid of a triangle PQR is [tex](0,\frac{-2}{3} )[/tex].
Answer:
(0,-0.6667)
Step-by-step explanation:
Centroid = ((x1 + x2 + x3)/3, (y1 + y2 + x3)/3)
= ((-4 + (2) + (2))/3, (-1 + (2) + (-3))/3)
= (0/3, -2/3)
= (0, -0.6667)