Which polynomials are listed with their correct additive inverse? Check all that apply. x2 + 3x – 2; –x2 – 3x + 2 –y7 – 10; –y7 + 10 6z5 + 6z5 – 6z4; (–6z5) + (–6z5) + 6z4 x – 1; 1 – x (–5x2) + (–2x) + (–10); 5x2 – 2x + 10

Respuesta :

we know that

If two numbers have a sum of zero, then we say they are additive inverses

so

case A)

[tex]x^{2} +3x-2[/tex]

[tex]-x^{2} -3x+2[/tex]

Sum the polynomials

[tex](x^{2} +3x-2)+(-x^{2} -3x+2)=0[/tex]

therefore

they are additive inverses

case B)

[tex]-y^{7} -10[/tex]

[tex]-y^{7} +10[/tex]

Sum the polynomials

[tex](-y^{7} -10)+(-y^{7} +10)=-2y^{7}[/tex]

[tex]-2y^{7}\neq 0[/tex]

therefore

they are not additive inverses

case C)

[tex]6z^{5} +6z^{5}-6z^{4}[/tex]

[tex](-6z^{5}) +(-6z^{5})+6z^{4}[/tex]

Sum the polynomials

[tex](6z^{5} +6z^{5}-6z^{4})+((-6z^{5}) +(-6z^{5})+6z^{4})=0[/tex]

therefore

they are additive inverses

case D)

[tex]x-1[/tex]

[tex]1-x[/tex]

Sum the polynomials

[tex](x-1)+(1-x)=0[/tex]

therefore

they are additive inverses

case E)

[tex](-5x^{2})+(-2x)+(-10)[/tex]

[tex]5x^{2}-2x+10[/tex]

Sum the polynomials

[tex]((-5x^{2})+(-2x)+(-10))+(5x^{2}-2x+10)=-4x[/tex]

[tex]-4x}\neq 0[/tex]

therefore

they are not additive inverses

Additive inverse means that the sum of two numbers will be zero and the options that are additive inverse is A), C), and D).

Additive inverse means that the sum of two numbers will be zero. Now, check all the given options:

A). [tex]x^2+3x-2\; ;\; -x^2-3x+2[/tex]

Sum of both the polynoimials will be:

[tex]=(x^2+3x-2)+(-x^2-3x+2)[/tex]

[tex]=0[/tex]

B). [tex]-y^7-10\; ;\; -y^7+10[/tex]

Sum of both the polynoimials will be:

[tex]=(-y^7-10)+(-y^7+10)[/tex]

[tex]=-2y^7[/tex]

C). [tex]6z^5+6z^5-6z^4\; ;\; -6z^5+(-6z^5)+6z^4[/tex]

Sum of both the polynoimials will be:

[tex]=6z^5+6z^5-6z^4+( -6z^5+(-6z^5)+6z^4)[/tex]

[tex]=0[/tex]

D). [tex]x-1\; ;\; 1-x[/tex]

Sum of both the polynoimials will be:

[tex]= x-1+1-x[/tex]

[tex]=0[/tex]

E). [tex](-5x^2)+(-2x)+(-10)\; ;\; 5x^2-2x+10[/tex]

Sum of both the polynoimials will be: [tex]=(-5x^2)+(-2x)+(-10)+ 5x^2-2x+10[/tex]

[tex]=-4x[/tex]

From the above calculation it can be concluded that option A), C), and D) are additive inverse.

For more information, refer the link given below:

https://brainly.com/question/19770987