Answer: 1. Coordinates of N=(a,b).
2. Area of ΔKNM=ab.
3. Base of ΔMNL= 2a and height =b.
Explanation
1. Given: ΔKML in which N is the midpoint of L(2a,0) and and K(0,2b)
By mid point theorem the coordinates of N = [tex](\frac{2a+0}{2},\frac{0+2b}{2}=(a,b)[/tex]
2. Given: In ΔKNM , base MK=2b and height=a then
Area of ΔKNM=[tex]\frac{1}{2}base\times\ height=\frac{1}{2}\times2b\times\ a=ab[/tex]
3.Given: Area of ΔMNL =ab
base of ΔMNL=2a ,across x axis.
Now ,
Arera of ΔMNL
[tex]=\frac{1}{2}\times\ base\ height=ab\\\Rightarrow\frac{1}{2}\times\ 2a\times\ height=ab\\\Rightarrow\ height=b[/tex]