1. What are the endpoint coordinates for the midsegment of △JKL that is parallel to JL⎯⎯⎯⎯?

Enter your answer, as a decimal or whole number, in the boxes.
( ) ( ), and ( ) ( )
2. In parallelogram ABCD , diagonals AC⎯⎯⎯⎯⎯ and BD⎯⎯⎯⎯⎯ intersect at point E, BE=2x2−3x , and DE=x2+10 .

What is BD ?
Enter your answer in the box.

units
3.JKLM is a parallelogram.

What is the measure of ∠KLJ?

Enter your answer in the box.

1 What are the endpoint coordinates for the midsegment of JKL that is parallel to JL Enter your answer as a decimal or whole number in the boxes and 2 In parall class=
1 What are the endpoint coordinates for the midsegment of JKL that is parallel to JL Enter your answer as a decimal or whole number in the boxes and 2 In parall class=

Respuesta :

Answer:

Part 1) [tex](2.5,2.5)[/tex] and [tex](2,0)[/tex]

Part 2) [tex]BD=70\ units[/tex]

Part 3) m∠KLJ=[tex]25\°[/tex]

Step-by-step explanation:

Part 1)

we have

[tex]J(1,4),K(4,1),L(0,-1)[/tex]

Find the coordinates of the midpoint JK

the x-coordinate of the midpoint JK is equal to

[tex]x=\frac{1+4}{2}\\\\x=2.5[/tex]

the y-coordinate of the midpoint JK is equal to

[tex]y=\frac{4+1}{2}\\\\y=2.5[/tex]

The midpoint JK is the point [tex](2.5,2.5)[/tex]

Find the coordinates of the midpoint LK

the x-coordinate of the midpoint LK is equal to

[tex]x=\frac{0+4}{2}\\\\x=2[/tex]

the y-coordinate of the midpoint LK is equal to

[tex]y=\frac{-1+1}{2}\\\\y=0[/tex]

The midpoint LK is the point [tex](2,0)[/tex]

The answer part 1) is

the endpoint coordinates for the midsegment of △JKL that is parallel to JL are the points  [tex](2.5,2.5)[/tex] and [tex](2,0)[/tex]

Part 2)

we know that

The diagonals bisect the parallelogram into two congruent triangles

In the parallelogram ABCD

[tex]BE=DE[/tex]

substitute the values

[tex]2x^{2}-3x=x^{2}+10\\x^{2}-3x-10=0[/tex]

Solve the quadratic equation

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-3x-10=0[/tex]  

so

[tex]a=1\\b=-3\\c=-10[/tex]

substitute in the formula

[tex]x=\frac{3(+/-)\sqrt{(-3)^{2}-4(1)(-10)}} {2(1)}[/tex]    

[tex]x=\frac{3(+/-)\sqrt{49}} {2}[/tex]    

[tex]x=\frac{3(+/-)7} {2}[/tex]    

[tex]x=\frac{3+7} {2}=5[/tex]    

[tex]x=\frac{3-7} {2}=-2[/tex]    

Find the value of BD

[tex]BD=2x^{2}-3x+x^{2}+10[/tex]

Substitute the value of [tex]x=5[/tex]

[tex]BD=2(5)^{2}-3(5)+(5)^{2}+10=70\ units[/tex]

Part 3)

we know that

The diagonals bisect the parallelogram into two congruent triangles

In the parallelogram JKLM

m∠KLJ=m∠MLJ

we have that

m∠MLJ=[tex]25\°[/tex]

therefore

m∠KLJ=[tex]25\°[/tex]