[tex]\bf ~~~~~~ \textit{Compounding Continuously Interest Earned Amount}\\\\
A=Pe^{rt}\qquad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to& \$1000\\
r=rate\to 3.7\%\to \frac{3.7}{100}\to &0.037\\
t=years\to &5
\end{cases}
\\\\\\
A=1000e^{0.037\cdot 5}\implies A=1000e^{0.185}\\\\
-------------------------------\\\\[/tex]
[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$1000\\
r=rate\to 3.7\%\to \frac{3.7}{100}\to &0.037\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{quarterly, thus four}
\end{array}\to &4\\
t=years\to &5
\end{cases}
\\\\\\
A=1000\left(1+\frac{0.037}{4}\right)^{4\cdot 5}\implies A=1000(1.00925)^{20}[/tex]
compare both amounts.