Respuesta :
now, we're assuming this is for interior angles.
the sum of all the interior angles in a polygon is
180(n - 2) n = number of sides in a polygon.
now, this is an OCTAgon, it has OCTA=8 sides, so it has a sum of its interior angles at 180( 8 - 2) --> 180(6) ---> 1080°.
now, we already know seven of those eight angles add up to 1000, so... surely you'd know what the last one is.
the sum of all the interior angles in a polygon is
180(n - 2) n = number of sides in a polygon.
now, this is an OCTAgon, it has OCTA=8 sides, so it has a sum of its interior angles at 180( 8 - 2) --> 180(6) ---> 1080°.
now, we already know seven of those eight angles add up to 1000, so... surely you'd know what the last one is.
Answer: 80°
Step-by-step explanation:
We know that the sum of all angles in a polygon having n sides is given by :
[tex](n-2)\times 180^{\circ}[/tex]
For octagon , n= 8
Then, the sum of all angle sin octagon = [tex](8-2)\times 180^{\circ}[/tex]
[tex]=6\times 180^{\circ}[/tex]
[tex]=1080^{\circ}[/tex]
It is given that , The sum of the measures of seven angles of an octagon is 1000 degrees.
Then, the measure of the eighth angle = Sum of all angles - 1000°
= 1080° - 1000° =80°
Hence, the measure of the eighth angle is 80° .