A cone has a height of 6.4 inches and a diameter of 6 inches. What is the volume, in cubic inches, of the cone?

Respuesta :

The volume is 60.319 cubic inches

Answer: [tex]60.34\ \text{ cubic inches}[/tex]

Step-by-step explanation:

The volume of a cone is given by :-

[tex]V=\dfrac{1}{3}\pi r^2 h[/tex] , where r is radius and h is height of the cone.

Given : Height of cone : h= 6.4 inches

Diameter : d= 6 inches

i.e. [tex]r=\dfrac{d}{2}=\dfrac{6}{2}=3[/tex]  inches

Then, volume of cone will be :-

[tex]V=\dfrac{1}{3}(\dfrac{22}{7}) (3)^2 (6.4)\ \ [\because \pi=\dfrac{22}{7}]=60.3428571429\approx60.34\ \text{ inches}^3[/tex]

Hence, the volume of cone = [tex]60.34\ \text{ cubic inches}[/tex]