Respuesta :
Answer:
[tex]x[/tex]≅[tex]7.80,-1.80[/tex] (rounded to 2 decimal places)
Step-by-step explanation:
This is a quadratic equation : [tex]3x^2-18x+5=47[/tex]
Bringing everything to left side:
[tex]3x^2-18x+5=47\\3x^2-18x+5-47=0\\3x^2-18x-42=0[/tex]
We can use the quadratic formula to find the value(s) of x:
Quadratic Formula:
- [tex]x=\frac{-b+\sqrt{b^2-4ac} }{2a}[/tex]
and
- [tex]x=\frac{-b-\sqrt{b^2-4ac} }{2a}[/tex]
Where,
- a is the coefficient of [tex]x^2[/tex]
- b is the coefficient of [tex]x[/tex]
- c is the constant term
For our question we have:
[tex]a=3\\b=-18\\c=-42[/tex]
Plugging in all the values we get:
[tex]x=\frac{-(-18)+\sqrt{(-18)^2-4(3)(-42)} }{2(3)}\\x=\frac{18+\sqrt{828} }{6}[/tex]
This is approximately 7.80
and
[tex]x=\frac{-(-18)-\sqrt{(-18)^2-4(3)(-42)} }{2(3)}\\x=\frac{18-\sqrt{828} }{6}[/tex]
This is approximately -1.80
So, [tex]x[/tex]≅[tex]7.80,-1.80[/tex]