Respuesta :

csc = 1/sin

sin A = 16/(sqrt(9^2 + 16^2))

sin A = 16/sqrt(337)

csc A = sqrt(337)/16

B

Step 1

Find the length of AC

In the right triangle ABC

Applying the Pythagoras Theorem

[tex]AC^{2}=AB^{2}+BC^{2}[/tex]

In this problem we have

[tex]AB=9\ units\\BC=16\ units[/tex]

Substitute

[tex]AC^{2}=9^{2}+16^{2}[/tex]

[tex]AC^{2}=337[/tex]

[tex]AC=\sqrt{337}\ units[/tex]

Step 2

Find the csc(A)

we know that

[tex]csc(A)=\frac{1}{sin(A)}[/tex]

[tex]sin(A)=\frac{BC}{AC}[/tex]

so

[tex]csc(A)=\frac{AC}{BC}[/tex]

substitute

[tex]csc(A)=\frac{\sqrt{337}}{16}[/tex]

therefore

the answer is

[tex]csc(A)=\frac{\sqrt{337}}{16}[/tex]