Respuesta :
The circumference of a circle is found using the formula:
[tex]C=2 \pi R[/tex],
where R is the radius of the circle. So the circumference of our circle is
[tex]C=2 \pi R\approx 2\cdot15\cdot 3.14=94.2[/tex] (ft).
The ratio of the arc length to the circumference is equal to the measure of the central angle to the complete angle. That is:
[tex]\displaystyle{ \frac{45^{\circ}}{360^{\circ}} = \frac{a.length}{94.2} [/tex].
[tex] \displaystyle{ \frac{1}{8}= \frac{a.length}{94.2} \rightarrow a.length= \frac{94.2}{8}= 11.775(ft)[/tex].
Answer: 11.8 (ft)
[tex]C=2 \pi R[/tex],
where R is the radius of the circle. So the circumference of our circle is
[tex]C=2 \pi R\approx 2\cdot15\cdot 3.14=94.2[/tex] (ft).
The ratio of the arc length to the circumference is equal to the measure of the central angle to the complete angle. That is:
[tex]\displaystyle{ \frac{45^{\circ}}{360^{\circ}} = \frac{a.length}{94.2} [/tex].
[tex] \displaystyle{ \frac{1}{8}= \frac{a.length}{94.2} \rightarrow a.length= \frac{94.2}{8}= 11.775(ft)[/tex].
Answer: 11.8 (ft)