Respuesta :

We desire to discover the value of ||v+w|| 
if v=5i-7j and w=3i+2j 
|r| =../r.+..r .....√...1....2 
if r = r(1)i +r(2)j 
We first find the value of 
v+ w by adding v(1) +w(1) = 5+3 = 8 and by adding v(2) +w(2) = -7+2 = -5 
so v+w = 8i -5j 
and 
|v+w| = √8²+(-5)² 
=√64 + 25 
=√89
= 9.43398113

We can use the formula to find the length of the vector to find the result.

The result is [tex]||v+w|| = \sqrt{89}[/tex]

How to find the length of vector x = ai + bj ?

[tex]||x|| = \sqrt{a^2 + b^2}[/tex]

How to find the magnitude ||v+w||?

We will firstly add the vectors v and w.

Thus,

[tex]v + w = (5i - 7j) + (3i+2j) = (5+3)i + (-7+2)j = 8i -5j[/tex]

The magnitude is found as:

[tex]||v+w|| = \sqrt{8^2 + (-5)^2} = \sqrt{89}[/tex]

Thus, the result is [tex]||v+w|| = \sqrt{89}[/tex]

Learn more about vectors here:
https://brainly.com/question/13874773