Respuesta :
[tex]b {}^{x} = n \\ taking \: log \: on \: both \: the \: sides \: \\ log(b {}^{x} ) = log(n) \\ x( log(b) ) = log(n) \\ x = \frac{ log(n) }{ log(b) } \\ x = log_{b}(n) [/tex]
Answer: The required logarithmic form of the given equation is [tex]x=\log_bN.[/tex]
Step-by-step explanation: We are given to express the following equation in logarithmic form :
[tex]b^x=N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
We know that
The logarithmic form of an exponential equation [tex]a^C=b[/tex] is given by
[tex]C=\log_ab.[/tex]
So, from equation (i), we get
[tex]b^x=N\\\\\Rightarrow x=\log_bN.[/tex]
Thus, the required logarithmic form of the given equation is [tex]x=\log_bN.[/tex]