Respuesta :

Space

Answer:

[tex]\displaystyle \rho \sin^2 \phi - \cos \phi = 0[/tex]

General Formulas and Concepts:

Multivariable Calculus

Cylindrical Coordinate Conversions:

  • [tex]\displaystyle x = r \cos \theta[/tex]
  • [tex]\displaystyle y = r \sin \theta[/tex]
  • [tex]\displaystyle z = z[/tex]
  • [tex]\displaystyle r^2 = x^2 + y^2[/tex]
  • [tex]\displaystyle \tan \theta = \frac{y}{x}}[/tex]

Spherical Coordinate Conversions:

  • [tex]\displaystyle r = \rho \sin \phi[/tex]
  • [tex]\displaystyle x = \rho \sin \phi \cos \theta[/tex]
  • [tex]\displaystyle z = \rho \cos \phi[/tex]
  • [tex]\displaystyle y = \rho \sin \phi \sin \theta[/tex]
  • [tex]\displaystyle \rho = \sqrt{x^2 + y^2 + z^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle z = x^2 + y^2[/tex]

Step 2: Convert

  1. [Equation] Substitute in Cylindrical Coordinate Conversions:
    [tex]\displaystyle z = r^2[/tex]
  2. Substitute in Spherical Coordinate Conversions:
    [tex]\displaystyle \rho \cos \phi = ( \rho \sin \phi )^2[/tex]
  3. Simplify:
    [tex]\displaystyle \rho \cos \phi = \rho^2 \sin^2 \phi[/tex]
  4. Rewrite:
    [tex]\displaystyle \rho \cos \phi - \rho^2 \sin^2 \phi = 0[/tex]
  5. Simplify:
    [tex]\displaystyle \cos \phi - \rho \sin^2 \phi = 0[/tex]
  6. Rewrite:
    [tex]\displaystyle \rho \sin^2 \phi - \cos \phi = 0[/tex]

∴ we have written the rectangular equation into spherical coordinates.

---

Learn more about spherical coordinates: https://brainly.com/question/9728819

Learn more about multivariable calculus: https://brainly.com/question/4746216

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications