** ITS TIMED HELP **

How can Ari simplify the following expression? ((5)/(a-3)-4)/(2+(1)/(a-3))

Write the numerator and denominator with a common denominator. Then divide the numerator by the denominator. To do this, multiply the numerator by the reciprocal of the denominator.
Write the numerator and denominator with a common denominator. Then divide the numerator by the denominator. To do this, multiply the numerators and multiply the denominators.
Divide the numerator and the denominator by a – 3. Then divide the numerator by the denominator.
Divide the numerator and the denominator by a – 3. Then simplify the numerator and simplify the denominator.

Respuesta :

we have

[tex]\frac{(\frac{5}{(a-3)}-4)}{(2+\frac{1}{(a-3)})}[/tex]

we know that

[tex]numerator=(\frac{5}{(a-3)}-4)[/tex]

[tex]denominator=(2+\frac{1}{(a-3)})[/tex]

Step [tex]1[/tex]

Write the numerator and denominator with a common denominator

Numerator

[tex]\frac{5}{(a-3)}-4=\frac{5-4(a-3)}{(a-3)}=\frac{(17-4a)}{(a-3)}[/tex]

Denominator

[tex](2+\frac{1}{(a-3)})=\frac{2(a-3)+1}{(a-3)}=\frac{(2a-5)}{(a-3)}[/tex]

Step [tex]2[/tex]

Divide the numerator by the denominator

[tex](\frac{(17-4a)}{(a-3)})/(\frac{(2a-5)}{(a-3)})[/tex]

To do this, multiply the numerator by the reciprocal of the denominator.

[tex](\frac{(17-4a)}{(a-3)})*(\frac{(a-3)}{(2a-5)})=\frac{(17-4a)}{(2a-5)}[/tex]

therefore

the answer is the option

Write the numerator and denominator with a common denominator. Then divide the numerator by the denominator. To do this, multiply the numerator by the reciprocal of the denominator

Answer: A

Step-by-step explanation:

Because I said so