Find the dimensions of the rectangle with largest area that can be inscribed in an equilateral triangle with sides of 1 unit, if one side of the rectangle is on the base of the equilateral triangle.

Respuesta :

W0lf93
Maximum area = sqrt(3)/8 Let's first express the width of the triangle as a function of it's height. If you draw an equilateral triangle, then a rectangle using one of the triangles edges as the base, you'll see that there's 4 regions created. They are the rectangle, a smaller equilateral triangle above the rectangle, and 2 right triangles with one leg being the height of the rectangle and the other 2 angles being 30 and 60 degrees. Let's call the short leg of that triangle b. And that makes the width of the rectangle equal to 1 minus twice b. So we have w = 1 - 2b b = h/sqrt(3) So w = 1 - 2*h/sqrt(3) The area of the rectangle is A = hw A = h(1 - 2*h/sqrt(3)) A = h*1 - h*2*h/sqrt(3) A = h - 2h^2/sqrt(3) We now have a quadratic equation where A = -2/sqrt(3), b = 1, and c=0. We can solve the problem by using a bit of calculus and calculating the first derivative, then solving for 0. But since this is a simple quadratic, we could also take advantage that a parabola is symmetrical and that the maximum value will be the midpoint between it's roots. So let's use the quadratic formula and solve it that way. The 2 roots are 0, and 1.5/sqrt(3). The midpoint is (0 + 1.5/sqrt(3))/2 = 1.5/sqrt(3) / 2 = 0.75/sqrt(3) So the desired height is 0.75/sqrt(3). Now let's calculate the width: w = 1 - 2*h/sqrt(3) w = 1 - 2* 0.75/sqrt(3) /sqrt(3) w = 1 - 2* 0.75/3 w = 1 - 1.5/3 w = 1 - 0.5 w = 0.5 The area is A = hw A = 0.75/sqrt(3) * 0.5 A = 0.375/sqrt(3) Now as I said earlier, we could use the first derivative. Let's do that as well and see what happens. A = h - 2h^2/sqrt(3) A' = 1h^0 - 4h/sqrt(3) A' = 1 - 4h/sqrt(3) Now solve for 0. A' = 1 - 4h/sqrt(3) 0 = 1 - 4h/sqrt(3) 4h/sqrt(3) = 1 4h = sqrt(3) h = sqrt(3)/4 w = 1 - 2*(sqrt(3)/4)/sqrt(3) w = 1 - 2/4 w = 1 -1/2 w = 1/2 A = wh A = 1/2 * sqrt(3)/4 A = sqrt(3)/8 And the other method got us 0.375/sqrt(3). Are they the same? Let's see. 0.375/sqrt(3) Multiply top and bottom by sqrt(3) 0.375*sqrt(3)/3 Multiply top and bottom by 8 3*sqrt(3)/24 Divide top and bottom by 3 sqrt(3)/8 Yep, they're the same. And since sqrt(3)/8 looks so much nicer than 0.375/sqrt(3), let's use that as the answer.
The area of the rectangle is equal to L x W where L is the length and W is the width. 

               A = L x W

If we let L be the length and given that the triangle is equilateral with sides equal to 1, the value of W should be (0.5 - L/2)(tan 60)

           W = (0.5 - L/2)(tan 60)

Simplifying the expression for the width,
          W = 0.866 - 0.866L

The area now becomes,
      A = (L)(0.866 - 0.866L)

Simplifying,
    
   A = 0.866L - 0.866L²

Derive and equate to zero for the maximum value of L. 
   dA = 0.866 - 2(0.866)(L) = 0

The value of L from the equation should be 0.5. 
           W = 0.866 - 0.866(0.5) = 0.433

Answer: L = 0.5
             W = 0.433