Answer:
1)
S=48984 m^2
2)
slant height=19 m.
Step-by-step explanation:
1)
The height(h) of cone is given by: 50 m.
Diameter of cone is: 240 m.
Also radius(r) of cone is:240/2=120 m.
The lateral surface(S) area is given by:
[tex]S=\pi r\sqrt{h^2+r^2}[/tex]
[tex]S=3.14\times 120\times \sqrt{(50)^2+(120)^2}\\ \\S=3.14\times 120\times \sqrt{2500+14400}\\ \\S=3.14\times 120\times \sqrt{16900}\\\\S=3.14\times 120\times 130\\\\S=48984 m^2[/tex]
Hence, lateral surface area of cone= 48984 m^2.
2)
We are given that radius(r) of cone=9 m.
Height (h) of cone = 17 m.
Slant height(l) of cone is given by:
[tex]l=\sqrt{h^2+r^2}[/tex]
[tex]l=\sqrt{(17)^2+9^2}\\\\l=\sqrt{289+81}\\\\l=sqrt{370}=19.2353\\\\l=19 m.[/tex]
Hence, slant height is 19 m.