To practice problem-solving strategy 5.2 dynamics problems. a 30.0-kg box is being pulled across a carpeted floor by a horizontal force of 230 n , against a friction force of 210 n . what is the acceleration of the box

Respuesta :

The acceleration of the box on the Carpeted floor is [tex]\fbox{\begin\ 0.67\,{{{\text{ m}}\mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}^2}\\\end{minispace}}[/tex] or [tex]\fbox{\begin\\\dfrac{2}{3}\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right. \kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}\\\end{minispace}}[/tex].

Further Explanation:

The friction force acting on the box is the force acting in the direction opposite to the motion of the box and therefore, the friction force opposes the relative motion of the box on the floor.

Given:

The mass of the box is [tex]30.0\,{\text{kg}}[/tex].

The force applied on the box is [tex]230\,{\text{N}}[/tex].

The friction force acting on the box is [tex]210\,{\text{N}}[/tex].

Concept:

The friction force acting on the box during the relative motion of the box on the floor reduces the net force acting on the box. The friction force acting on a body is of opposing nature and it opposes the motion of the body.

The net force acting on the box during motion is:

[tex]\fbox{\begin\\\bf{F_{{\text{net}}}} = F - f\\\end{minispace}}[/tex]                                                   …… (I)

Here, [tex]{F_{{\text{net}}}}[/tex] is the net force acting on the box, [tex]F[/tex] is the force applied on the box and [tex]f[/tex] is the friction force acting on the box during relative motion.

Substitute [tex]230\,{\text{N}}[/tex] for [tex]F[/tex] and [tex]210\,{\text{N}}[/tex] for [tex]f[/tex] in equation (I).

[tex]\begin{aligned}{F_{{\text{net}}}}&=230\,{\text{N}}-{\text{210}}\,{\text{N}}\\&=2{\text{0}}\,{\text{N}}\\\end{aligned}[/tex]

The acceleration of the box on the carpeted floor is due to the net force acting on the box and it is given as the ratio of net force and the mass of the box.

The acceleration of the box is given as:

[tex]\fbox{\begin\\\\\bf\ a =\dfrac{{{F_{{\text{net}}}}}}{m}\\\end{minispace}}[/tex]                                            …… (II)

Here, [tex]a[/tex] is the acceleration of the box and [tex]m[/tex] is the mass of the box.

Substitute [tex]20\,{\text{N}}[/tex] for [tex]{F_{{\text{net}}}}[/tex] and [tex]30\,{\text{kg}}[/tex] for m in equation (II).

[tex]\begin{aligned} a &= \frac{{20\,{\text{N}}}}{{30\,{\text{kg}}}}\\&= \frac{2}{3}\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right. \kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}} \\&= 0.667\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right. \kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}} \\ \end{aligned}[/tex]

Thus, the acceleration of the box on the carpeted floor is [tex]\fbox{\begin\ 0.67\,{{{\text{ m}}\mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}^2}\\\end{minispace}}[/tex] or [tex]\fbox{\begin\\\dfrac{2}{3}\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right. \kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}\\\end{minispace}}[/tex].

Learn more:

1.  Conservation of energy https://brainly.com/question/3943029

2.  A ball falling under the acceleration due to gravity https://brainly.com/question/10934170

3.  Translational kinetic energy of a molecule https://brainly.com/question/9078768

Answer Details:

Grade: College

Subject: Physics

Chapter: Kinematics

Keywords:

Friction, acceleration, carpeted floor, force, relative motion, motion, net force, oppose, 2/3 m/s2, 2/3 m/s^2, 0.67 m/s^2, 0.67 m/s2, 2/3, 0.667 m/s^2, 0.667 m/s2.

Ver imagen adityaso

Acceleration of the box is

[tex]\rm \dfrac{2}{3} \; m/sec^2[/tex]

Step by Step Solution :

Given :

Mass, m = 30 kg

Horizontal Force, F = 230 N

Friction Force, f = 210N

Calculation :

Refer the attached diagram for better understanding.

We know that,

[tex]\rm F_T= ma[/tex]

F - f = ma

230 - 210 = 30a

[tex]\rm a = \dfrac{2}{3}\;m/sec^2[/tex]

Therefore acceleration of the box is

[tex]\rm \dfrac{2}{3} \; m/sec^2[/tex]

For more information, refer the link given below

https://brainly.com/question/18754956?referrer=searchResults

Ver imagen ahirohit963