In two or more complete sentences, describe the transformation(s) that take place on the parent function, f(x)=log(x), to achieve the graph of g(x)=log(-2x-4)+5.

Respuesta :

Transforming [tex]f(x) = log(x)[/tex] to [tex]f(x) = log (2x)[/tex] gives the effect of squashing the graph horizontally (by halving the x-coordinate)

Then from [tex]f(x) = log(2x)[/tex] to [tex]f(x) = log (-2x)[/tex] is reflecting on the y-axis

Then from [tex]log(-2x) [/tex] to [tex]log(-2x-4) [/tex] is to translate by 4 units to the right

Finally from [tex]log(-2x-4) [/tex] to [tex]log(-2x-4)+5[/tex] is translating the graph up by 5 units