Respuesta :
t + s = 925....s = 925 - t
4t + 6s = 4524
4t + 6(925 - t) = 4524
4t + 5550 - 6t = 4524
-2t = 4524 - 5550
-2t = -1026
t = 1026/2
t = 513 <== 513 turkey sandwiches
t + s = 925
513 + s = 925
s = 925 - 513
s = 412 <=== 412 steak sandwiches
4t + 6s = 4524
4t + 6(925 - t) = 4524
4t + 5550 - 6t = 4524
-2t = 4524 - 5550
-2t = -1026
t = 1026/2
t = 513 <== 513 turkey sandwiches
t + s = 925
513 + s = 925
s = 925 - 513
s = 412 <=== 412 steak sandwiches
Answer:
They sold 513 turkey sandwiches.
Step-by-step explanation:
Let t be the number of turkey sandwiches and s be the number of steak sandwiches.
With these variables, we can create equations for the totals they've given us:
Total sandwiches = [tex]t+s=925[/tex]
Total income = [tex]4t+6s=4524[/tex]
Now we can solve the system for the number of turkey sandwiches and steak sandwiches
- Isolate t for [tex]t+s=925[/tex] => [tex]t=925-s[/tex]
- Substitute [tex]t=925-s[/tex] into [tex]4t+6s=4524[/tex]
[tex]4\left(925-s\right)+6s=4524[/tex]
- Solve for s
[tex]3700-4s+6s=4524\\3700+2s=4524\\3700+2s-3700=4524-3700\\2s=824\\\frac{2s}{2}=\frac{824}{2}\\s=412[/tex]
- For [tex]t=925-s[/tex] substitute s = 412
[tex]t=925-412\\t=513[/tex]
They sold 513 turkey sandwiches and 412 steak sandwiches.