Respuesta :
1) Compund Ir (x) O(y)
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
the mass of crucible = 38.26
Mass of crucible + Ir = 39.52 g
So mass of Ir = 39.52 - 38.26 = 1.26 g
atomic mass of Ir = 192 g / mole
Moles of Ir = mass / atomic mass = 1.26/ 192 = 0.0066
mass of crucible + Iridium oxide = 39.73 g
Mass of oxygen = total mass - (mass of Ir + mass of crucible )
Mass of oxygen = 39.73 - (39.52) = 0.21g
moles of O = mass / atomic mass = 0.21 / 16 = 0.0131
let us divide the moles of Ir and O with moles of Ir
moles of Ir = 0.0066 / 0.0066 = 1
Moles of O = 0.0131 /0.0066 = 1.98 = 2
the empirical formula = IrO2