If 300 cm2 of material is available to make a box with a square base and an open top, find the maximum volume of the box in cubic centimeters. Answer to the nearest cubic centimeter without commas.

Respuesta :

Answer:

Maximum volume of box is 500 cubic centimeters.

Step-by-step explaination:

Given 300 [tex]cm^{2}[/tex] of material available to make a box with a square base and an open top that means given area of box is 300 [tex]cm^{2}[/tex]. Now, we have to find the maximum volume of box.

[tex]Area=300cm^{2}[/tex]

Now, area of box with square box and open top = area square base + 4ab

                                                     = [tex]a^{2}+4ab[/tex]

⇒ [tex]a^{2}+4ab[/tex] = 300

⇒ [tex]b=\frac{300-a^{2} }{4a}[/tex]    →  (1)

Now, Volume of box  i.e [tex]V=a^{2}b[/tex]

Using eq (1),                     [tex]V=a^{2}\frac{300-a^{2} }{4a}[/tex]

                                                  = [tex]\frac{1}{4}(300a-a^{2})[/tex]

To find maximum volume differentiate above eq w.r.t aand then and equate to 0, we get

 [tex]\frac{dV}{da}=\frac{1}{4}(300-3a^{2})=0[/tex]

⇒         [tex]3a^{2}=300[/tex]

⇒           [tex]a^{2}=100[/tex] ⇒ a=10

⇒                 [tex]b=\frac{300-100}{40}=5[/tex]

hence, Volume=100(5)=500 [tex]cm^{2}[/tex]