[tex]\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{t=0}^{t=\pi}\mathbf f(\mathbf r(t))\cdot\mathrm d(\sin t\,\mathbf i+\cos t\,\mathbf j+t\,\mathbf k)[/tex]
[tex]=\displaystyle\int_0^\pi\bigg(\sin t\,\mathbf i+\cos t\,\mathbf j+\sin t\cos t\,\mathbf k\bigg)\cdot\bigg(\cos t\,\mathbf i-\sin t\,\mathbf j+\mathbf k\bigg)\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^\pi\sin t\cos t\,\mathrm dt=0[/tex]