Respuesta :
The margin of error given the proportion can be found using the formula
[tex]z* \sqrt{ \frac{p(1-p)}{n} } [/tex]
Where
[tex]z*[/tex] is the z-score of the confidence level
[tex]p[/tex] is the sample proportion
[tex]n[/tex] is the sample size
We have
[tex]z*=2.58[/tex]
[tex]p=0.38[/tex]
[tex]n=80[/tex]
Plugging these values into the formula, we have:
[tex]2.58 \sqrt{ \frac{0.38(1-0.38)}{80} } =0.14[/tex]
The result 0.14 as percentage is 14%
Margin error is 38% ⁺/₋ 14%
[tex]z* \sqrt{ \frac{p(1-p)}{n} } [/tex]
Where
[tex]z*[/tex] is the z-score of the confidence level
[tex]p[/tex] is the sample proportion
[tex]n[/tex] is the sample size
We have
[tex]z*=2.58[/tex]
[tex]p=0.38[/tex]
[tex]n=80[/tex]
Plugging these values into the formula, we have:
[tex]2.58 \sqrt{ \frac{0.38(1-0.38)}{80} } =0.14[/tex]
The result 0.14 as percentage is 14%
Margin error is 38% ⁺/₋ 14%
Answer: 14%
Step-by-step explanation:
Given: Sample size [tex]n=80[/tex]
sample proportion [tex]p=0.38[/tex]
Confidence level [tex]z=2.58[/tex]
We know that Margin error [tex]M.E.=z\sqrt{\frac{p(1-p)}{n}}[/tex]
[tex]\\\Rightarrow\ M.E.=2.58\sqrt{\frac{0.38(1-0.38)}{80}}[/tex]
[tex]\\\Rightarrow\ M.E.=2.58\sqrt{\frac{0.2356}{80}}[/tex]
[tex]\\\Rightarrow\ M.E.=2.58\sqrt{0.002945}[/tex]
[tex]\\\Rightarrow\ M.E.=2.58\times0.054[/tex]
[tex]\\\Rightarrow\ M.E.=0.14[/tex]
Thus, to the nearest whole percent, the margin of error for the poll is 14%