Respuesta :
Answer:
[tex]\displaystyle \nabla f(3, 9, 8) = 6 \hat{\i} + 18 \hat{\j} + 16 \hat{\text{k}}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Multivariable Calculus
Differentiation
- Partial Derivatives
- Derivative Notation
Gradient: [tex]\displaystyle \nabla f(x, y, z) = \frac{\partial f}{\partial x} \hat{\i} + \frac{\partial f}{\partial y} \hat{\j} + \frac{\partial f}{\partial z} \hat{\text{k}}[/tex]
Gradient Property [Addition/Subtraction]: [tex]\displaystyle \nabla \big[ f(x) + g(x) \big] = \nabla f(x) + \nabla g(x)[/tex]
Gradient Property [Multiplied Constant]: [tex]\displaystyle \nabla \big[ \alpha f(x) \big] = \alpha \nabla f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle f(x, y, z) = x^2 + y^2 + z^2[/tex]
[tex]\displaystyle P(3, 9, 8)[/tex]
Step 2: Find Gradient
- [Function] Differentiate [Gradient]: [tex]\displaystyle \nabla f = \frac{\partial}{\partial x} \Big( x^2 + y^2 + z^2 \Big) \hat{\i} + \frac{\partial}{\partial y} \Big( x^2 + y^2 + z^2 \Big) \hat{\j} + \frac{\partial}{\partial z} \Big( x^2 + y^2 + z^2 \Big) \hat{\text{k}}[/tex]
- [Gradient] Rewrite [Gradient Property - Addition/Subtraction]: [tex]\displaystyle \nabla f = \bigg[ \frac{\partial}{\partial x}(x^2) + \frac{\partial}{\partial x}(y^2) + \frac{\partial}{\partial x}(z^2) \bigg] \hat{\i} + \bigg[ \frac{\partial}{\partial y}(x^2) + \frac{\partial}{\partial y}(y^2) + \frac{\partial}{\partial y}(z^2) \bigg] \hat{\j} + \bigg[ \frac{\partial}{\partial z}(x^2) + \frac{\partial}{\partial z}(y^2) + \frac{\partial}{\partial z}(z^2) \bigg] \hat{\text{k}}[/tex]
- [Gradient] Differentiate [Derivative Rule - Basic Power Rule]: [tex]\displaystyle \nabla f = 2x \hat{\i} + 2y \hat{\j} + 2z \hat{\text{k}}[/tex]
- [Gradient] Substitute in point: [tex]\displaystyle \nabla f(3, 9, 8) = 2(3) \hat{\i} + 2(9) \hat{\j} + 2(8) \hat{\text{k}}[/tex]
- [Gradient] Evaluate: [tex]\displaystyle \nabla f(3, 9, 8) = 6 \hat{\i} + 18 \hat{\j} + 16 \hat{\text{k}}[/tex]
∴ the gradient of the function at the given point is <6, 18, 16>.
---
Learn more about multivariable calculus: https://brainly.com/question/17433118
---
Topic: Multivariable Calculus
Unit: Directional Derivatives