Respuesta :

Space

Answer:

[tex]\displaystyle \nabla f(3, 9, 8) = 6 \hat{\i} + 18 \hat{\j} + 16 \hat{\text{k}}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Multivariable Calculus

Differentiation

  • Partial Derivatives
  • Derivative Notation

Gradient:                                                                                                             [tex]\displaystyle \nabla f(x, y, z) = \frac{\partial f}{\partial x} \hat{\i} + \frac{\partial f}{\partial y} \hat{\j} + \frac{\partial f}{\partial z} \hat{\text{k}}[/tex]

Gradient Property [Addition/Subtraction]:                                                          [tex]\displaystyle \nabla \big[ f(x) + g(x) \big] = \nabla f(x) + \nabla g(x)[/tex]

Gradient Property [Multiplied Constant]:                                                            [tex]\displaystyle \nabla \big[ \alpha f(x) \big] = \alpha \nabla f(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle f(x, y, z) = x^2 + y^2 + z^2[/tex]

[tex]\displaystyle P(3, 9, 8)[/tex]

Step 2: Find Gradient

  1. [Function] Differentiate [Gradient]:                                                             [tex]\displaystyle \nabla f = \frac{\partial}{\partial x} \Big( x^2 + y^2 + z^2 \Big) \hat{\i} + \frac{\partial}{\partial y} \Big( x^2 + y^2 + z^2 \Big) \hat{\j} + \frac{\partial}{\partial z} \Big( x^2 + y^2 + z^2 \Big) \hat{\text{k}}[/tex]
  2. [Gradient] Rewrite [Gradient Property - Addition/Subtraction]:                [tex]\displaystyle \nabla f = \bigg[ \frac{\partial}{\partial x}(x^2) + \frac{\partial}{\partial x}(y^2) + \frac{\partial}{\partial x}(z^2) \bigg] \hat{\i} + \bigg[ \frac{\partial}{\partial y}(x^2) + \frac{\partial}{\partial y}(y^2) + \frac{\partial}{\partial y}(z^2) \bigg] \hat{\j} + \bigg[ \frac{\partial}{\partial z}(x^2) + \frac{\partial}{\partial z}(y^2) + \frac{\partial}{\partial z}(z^2) \bigg] \hat{\text{k}}[/tex]
  3. [Gradient] Differentiate [Derivative Rule - Basic Power Rule]:                  [tex]\displaystyle \nabla f = 2x \hat{\i} + 2y \hat{\j} + 2z \hat{\text{k}}[/tex]
  4. [Gradient] Substitute in point:                                                                     [tex]\displaystyle \nabla f(3, 9, 8) = 2(3) \hat{\i} + 2(9) \hat{\j} + 2(8) \hat{\text{k}}[/tex]
  5. [Gradient] Evaluate:                                                                                     [tex]\displaystyle \nabla f(3, 9, 8) = 6 \hat{\i} + 18 \hat{\j} + 16 \hat{\text{k}}[/tex]

∴ the gradient of the function at the given point is <6, 18, 16>.

---

Learn more about multivariable calculus: https://brainly.com/question/17433118

---

Topic: Multivariable Calculus

Unit: Directional Derivatives