Respuesta :

c= 6 and d=2 so the answer is C.

Answer:

c=6 and d=2 makes the equation true

Step-by-step explanation:

[tex]\sqrt[3]{162x^cy^5} = 3x^2y(\sqrt[3]{6y^d})[/tex]

plug in c=2  and check

[tex]\sqrt[3]{162x^2y^5}[/tex]

We cannot simplify cuberoot (x^2)

So c=2 does not works

Lets try with c=6 and d=2

[tex]\sqrt[3]{162x^6y^5}[/tex]

Cuberoot(x^6) = x^2

cuberoot (y^5)= ycuberoot (y^2)

[tex]\sqrt[3]{162x^6y^5} = 3x^2y(\sqrt[3]{6y^2})[/tex]

So c=6 and d=2 makes the equation true