Respuesta :

5w + 8 - w = 6w - 2(w - 4)

Hope this helps :)

Answer:

Option b - [tex]5w + 8 - w = 6w - 2( w - 4)[/tex]  

Step-by-step explanation:

To find : Which equation is an identity?    

Solution :

Option a - [tex]11- (2v + 3) = -2v - 8[/tex]          

If we open the parenthesis,

[tex]11- 2v -3 = -2v - 8[/tex]    

[tex]-2v+8\neq -2v - 8[/tex]    

No identity applied.

Option b - [tex]5w + 8 - w = 6w - 2( w - 4)[/tex]          

If we apply distributive property, [tex]a(b+c)=ab+ac[/tex]

[tex]5w + 8 - w = 6w - 2w+8[/tex]    

[tex]4w+8= 4w+8[/tex]    

Distributive identity is applied.

Option c - [tex]7m - 2 = 8m + 4 - m[/tex]          

Solve by subtracting in RHS

[tex]7m - 2 \neq 7m + 4[/tex]    

No identity applied.

Option d- [tex]8y + 9 = 8y - 3[/tex]          

This is not possible as [tex]8y + 9 \neq 8y - 3[/tex]

No identity applied.          

Therefore, Option b is correct.