Respuesta :
Answer:
Option b - [tex]5w + 8 - w = 6w - 2( w - 4)[/tex]
Step-by-step explanation:
To find : Which equation is an identity?
Solution :
Option a - [tex]11- (2v + 3) = -2v - 8[/tex]
If we open the parenthesis,
[tex]11- 2v -3 = -2v - 8[/tex]
[tex]-2v+8\neq -2v - 8[/tex]
No identity applied.
Option b - [tex]5w + 8 - w = 6w - 2( w - 4)[/tex]
If we apply distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex]5w + 8 - w = 6w - 2w+8[/tex]
[tex]4w+8= 4w+8[/tex]
Distributive identity is applied.
Option c - [tex]7m - 2 = 8m + 4 - m[/tex]
Solve by subtracting in RHS
[tex]7m - 2 \neq 7m + 4[/tex]
No identity applied.
Option d- [tex]8y + 9 = 8y - 3[/tex]
This is not possible as [tex]8y + 9 \neq 8y - 3[/tex]
No identity applied.
Therefore, Option b is correct.