1) AB¯≅AD¯ Given
2)∠ACD is a right angle.- Given
3) m∠ACD=90° -Definition of right angle
4) m∠ACB=90° -Given
5) m∠ACB=m∠ACD -Transitive Property of Equality
6) ∠ACB≅∠ACD Definition of congruent angles
7) C is the midpoint of BD¯ Given
8)C bisects BD¯ ?
9) BC¯≅CD¯ Definition of bisect
10) AC¯≅AC¯ Reflexive Property of Congruence
11) △ABC≅△ADC -SAS Congruence Postulate


What is the correct reason for Statement 8?

Given


Definition of bisect


Definition of congruent segments


Definition of midpoint

1 ABAD Given 2ACD is a right angle Given 3 mACD90 Definition of right angle 4 mACB90 Given 5 mACBmACD Transitive Property of Equality 6 ACBACD Definition of con class=

Respuesta :

the answer is the definition of midpoint

Answer:

By definition of midpoint.

Step-by-step explanation:

proof:

1.Statement: [tex]\overline{AB}\cong \overline{AD}[/tex].

Reason: Given.

2.Statement: [tex]\angleACD[/tex] is a right angle.

Reason:Given.

3.Statement:[tex]m\angle ACD=90^{\circ}[/tex].

Reason: By definition of right angle.

4.Statement: [tex]m\angle ACB=90^{\circ}[/tex].

Reason: Given.

5.Statement: [tex]m\angle ACB=m\angle ACD[/tex]

Reason: Transitive property of equality.

6. Statement:[tex] m\angle ACB\cong m\angle ACD[/tex].

Reason: By definition of congruent triangles.

7.C is the midpoint of [tex]\overline {BD}[/tex].

Reason: Given.

8.Statement: C bisect [tex]\overline{BD}[/tex]

Reason: By definition of midpoint.

9.Statement:[tex]\overline{BC}\cong \overline{CD}[/tex]

Reason: By definition of bisect.

10.Statement:[tex]\overline{AC}\cong\overline{AC}[/tex]

Reason: By reflexive property of congruence.

11.Statement:[tex]\triangle ABC\cong \triangle ADC[/tex].

Reason: SAS congruence postulate.