Respuesta :
I would use the distance formula to solve this problem:
Distance formula: [tex] \sqrt{( x_{2} - x_{1} )^2 + ( y_{2}- y_{1})^2 } [/tex]
(x1,y1) = (3,5)
(x2,y2)= (0,1)
Plug in points to find radius:
r=[tex] \sqrt{( x_{2} - x_{1} )^2 + ( y_{2}- y_{1})^2 } [/tex]
r=[tex] \sqrt{( 0 - x_{1} )^2 + ( 1- y_{1})^2 } [/tex]
r=[tex] \sqrt{( 0 - 3 )^2 + ( 1- 5)^2 } [/tex]
r=[tex] \sqrt{( - 3 )^2 + ( - 4)^2 } [/tex]
r=[tex] \sqrt{(9 + 16 )} [/tex]
r=[tex] \sqrt{(25)} [/tex]
r= 5 units
To find the other point on the circle that crosses the y-axis change the sign of y2.
(x1,y1) = (3,5)
(x2,y2) = (0,-1)
Distance formula: [tex] \sqrt{( x_{2} - x_{1} )^2 + ( y_{2}- y_{1})^2 } [/tex]
(x1,y1) = (3,5)
(x2,y2)= (0,1)
Plug in points to find radius:
r=[tex] \sqrt{( x_{2} - x_{1} )^2 + ( y_{2}- y_{1})^2 } [/tex]
r=[tex] \sqrt{( 0 - x_{1} )^2 + ( 1- y_{1})^2 } [/tex]
r=[tex] \sqrt{( 0 - 3 )^2 + ( 1- 5)^2 } [/tex]
r=[tex] \sqrt{( - 3 )^2 + ( - 4)^2 } [/tex]
r=[tex] \sqrt{(9 + 16 )} [/tex]
r=[tex] \sqrt{(25)} [/tex]
r= 5 units
To find the other point on the circle that crosses the y-axis change the sign of y2.
(x1,y1) = (3,5)
(x2,y2) = (0,-1)
The coordinates of the other point of intersection with the y-axis will be (0, 9). And the x-intercept is at (3, 0).
What is the equation of circle?
Let r be the radius of the circle and the location of the center of the circle be (h, k).
Then the equation of the circle is given as,
(x - h)² + (y - k)² = r²
A circle with center (3,5).
Then the equation of the circle will be
(x - 3)² + (y - 5)² = r²
The circle intersects the y-axis at (0,1).
Then the radius of the circle will be
(0- 3)² + (1 - 5)² = r²
9 + 16 = r²
r² = 25
r = 5
Then the equation of the circle will be
(x - 3)² + (y - 5)² = 5²
Then the other y-intercept of the circle (0, a) will be
(0 - 3)² + (a - 5)² = 5²
9 + (a - 5)² = 25
(a - 5)² = 16
a - 5 = 4
a = 9
The intersection of the circle with x-axis at (b, 0) will be
(b - 3)² + (0 - 5)² = 5²
25 + (b - 3)² = 25
(b - 3)² = 0
b - 3 = 0
b = 3
Thus, the coordinates of the other point of intersection with the y-axis will be (0, 9). And the x-intercept is at (3, 0).
The graph is given below.
More about the equation of circle link is given below.
https://brainly.com/question/10618691
#SPJ2
