Respuesta :
sqrt(4x^2/3y)
Change the 4x^2 to (2x)^2
sqrt((2x)^2/3y)
= 2x sqrt(1/(3y))
Do you want me to simplify it any more?
Change the 4x^2 to (2x)^2
sqrt((2x)^2/3y)
= 2x sqrt(1/(3y))
Do you want me to simplify it any more?
For the given expression, the simplified form is [tex]\frac{2x\sqrt{3y} }{3y}[/tex]
From the question, we are to simplify the expression sqrt(4x^2/3y).
The expression is [tex]\sqrt{\frac{4x^{2} }{3y} }[/tex]
We can write that,
[tex]\sqrt{\frac{4x^{2} }{3y} } = \frac{\sqrt{4x^{2}}}{\sqrt{3y}}[/tex]
Then,
[tex]\frac{\sqrt{4x^{2}}}{\sqrt{3y}} = \frac{2x}{\sqrt{3y} }[/tex]
To simplify further, we can rationalize the denominator
We get
[tex]\frac{2x}{\sqrt{3y} } = \frac{2x}{\sqrt{3y} } \times \frac{\sqrt{3y} }{\sqrt{3y} }[/tex]
Then,
[tex]\frac{2x}{\sqrt{3y} } \times \frac{\sqrt{3y} }{\sqrt{3y} } = \frac{2x\sqrt{3y} }{3y}[/tex]
Hence, for the given expression, the simplified form is [tex]\frac{2x\sqrt{3y} }{3y}[/tex]
Learn more here: https://brainly.com/question/1280754