Respuesta :
[tex]\dfrac{9\cdot10^{-4}}{3\cdot10^{-10}}=\dfrac{9}{3}\cdot \dfrac{10^{-4}}{10^{-10}}=3\cdot10^{(-4)-(-10)}=3\cdot10^{-4+10}=\boxed{3\cdot10^6}[/tex]
Answer B.
Answer B.
Answer:
The correct option is B.
Step-by-step explanation:
We need to find how many times larger is [tex]9\times 10^{-4}[/tex] than [tex]3\times 10^{-10}[/tex].
Let [tex]9\times 10^{-4}[/tex] is x times larger than [tex]3\times 10^{-10}[/tex].
[tex]x\times 3\times 10^{-10}=9\times 10^{-4}[/tex]
Divide [tex]3\times 10^{-10}[/tex] on both sides.
[tex]x=\frac{9\times 10^{-4}}{3\times 10^{-10}}[/tex]
It can be written as
[tex]x=\frac{9}{3}\times \frac{10^{-4}}{10^{-10}}[/tex]
[tex]x=3\times \frac{10^{-4}}{10^{-10}}[/tex]
Using quotient property of exponent, we get
[tex]x=3\times 10^{-4-(-10)}[/tex] [tex][\because \frac{a^m}{a^n}=a^{m-n}][/tex]
[tex]x=3\times 10^{-4+10}[/tex]
[tex]x=3\times 10^{6}[/tex]
[tex]9\times 10^{-4}[/tex] is [tex]3\times 10^{6}[/tex] times larger than [tex]3\times 10^{-10}[/tex].
Therefore the correct option is B.