Respuesta :

[tex]\dfrac{9\cdot10^{-4}}{3\cdot10^{-10}}=\dfrac{9}{3}\cdot \dfrac{10^{-4}}{10^{-10}}=3\cdot10^{(-4)-(-10)}=3\cdot10^{-4+10}=\boxed{3\cdot10^6}[/tex]

Answer B.

Answer:

The correct option is B.

Step-by-step explanation:

We need to find how many times larger is [tex]9\times 10^{-4}[/tex] than [tex]3\times 10^{-10}[/tex].

Let [tex]9\times 10^{-4}[/tex] is x times larger than [tex]3\times 10^{-10}[/tex].

[tex]x\times 3\times 10^{-10}=9\times 10^{-4}[/tex]

Divide [tex]3\times 10^{-10}[/tex] on both sides.

[tex]x=\frac{9\times 10^{-4}}{3\times 10^{-10}}[/tex]

It can be written as

[tex]x=\frac{9}{3}\times \frac{10^{-4}}{10^{-10}}[/tex]

[tex]x=3\times \frac{10^{-4}}{10^{-10}}[/tex]

Using quotient property of exponent, we get

[tex]x=3\times 10^{-4-(-10)}[/tex]          [tex][\because \frac{a^m}{a^n}=a^{m-n}][/tex]

[tex]x=3\times 10^{-4+10}[/tex]

[tex]x=3\times 10^{6}[/tex]

[tex]9\times 10^{-4}[/tex] is [tex]3\times 10^{6}[/tex] times larger than [tex]3\times 10^{-10}[/tex].

Therefore the correct option is B.