Respuesta :

-x • (x3y4 - 6y3 + 30)
  _______________
            10
Steps
Step  1  : y Simplify —— 10 Equation at the end of step  1  : y (y3) y (-3x-((((3•—)•(x3))•————)•x))+(((6•——)•x)•y2) 5 6 10 Step  2  :Multiplying exponential expressions :

 2.1    y1 multiplied by y2 = y(1 + 2) = y3

Equation at the end of step  2  : y (y3) 3xy3 (-3x-((((3•—)•(x3))•————)•x))+———— 5 6 5 Step  3  : y3 Simplify —— 6 Equation at the end of step  3  : y y3 3xy3 (-3x-((((3•—)•(x3))•——)•x))+———— 5 6 5 Step  4  : y Simplify — 5 Equation at the end of step  4  : y y3 3xy3 (-3x-((((3•—)•x3)•——)•x))+———— 5 6 5 Step  5  :Equation at the end of step  5  : 3x3y y3 3xy3 (-3x - ((———— • ——) • x)) + ———— 5 6 5 Step  6  :Rewriting the whole as an Equivalent Fraction :

 6.1   Subtracting a fraction from a whole 

Rewrite the whole as a fraction using  10  as the denominator :

-3x -3x • 10 -3x = ——— = ———————— 1 10

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole 

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 6.2       Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

-3x • 10 - (x4y4) -x4y4 - 30x ————————————————— = ——————————— 10 10 Equation at the end of step  6  : (-x4y4 - 30x) 3xy3 ————————————— + ———— 10 5 Step  7  :Step  8  :Pulling out like terms :

 8.1     Pull out like factors :

   -x4y4 - 30x  =   -x • (x3y4 + 30)