Convert the polar equation r^2 = 2sin2Ө to a Cartesian equation. Answer choices: (x^2 + y^2)^2 = 2xy (x^2 + y^2)^2 = 4xy (x^2 + y^2)^2 = 2y^2

Respuesta :

Start by using the substitution [tex]\sin 2\theta = 2 \sin \theta \cos \theta[/tex]:

[tex]r^2 = 2 \sin 2\theta[/tex]
[tex]r^2 = 2(2 \sin \theta \cos \theta)[/tex]
[tex]r^2 = 4 \sin \theta \cos \theta[/tex]

Then, multiply both sides by [tex]r^2[/tex]:

[tex]r^4 = 4r^2 \sin \theta \cos \theta[/tex]
[tex](r^2)^2 = 4(r \sin \theta)(r \cos \theta)[/tex]

Since [tex]r^2 = x^2 + y^2[/tex], [tex]r \cos \theta = x[/tex], and [tex]r \sin \theta = y[/tex], we have that

[tex]\bf (x^2 + y^2)^2 = 4xy[/tex]
brekv

Answer:

(X^2+y^2)^2 =4xy

Step-by-step explanation: