Respuesta :
Given that
[tex]\overrightarrow{d_1}+\overrightarrow{d_2}=5.0\overrightarrow{d_3}, \ and \\ \\ \overrightarrow{d_1}-\overrightarrow{d_2}=1.0\overrightarrow{d_3} [/tex]
Also, given that
[tex]\overrightarrow{d_3}=2.6i+5.6j[/tex]
Let
[tex]\overrightarrow{d_1}=x_1i+y_1j[/tex], and
[tex]\overrightarrow{d_2}=x_2i+y_2j[/tex], then
[tex]x_1i+y_1j+x_2i+y_2j=5.0(2.6i+5.6j) \\ \\ \Rightarrow(x_1+x_2)i+(y_1+y_2)j=13i+28j \\ \\ \Rightarrow x_1+x_2=13 \ . \ . \ . \ . \ . \ (1) \\ \\ \Rightarrow y_1+y_2=28 \ . \ . \ . \ . \ . \ (2)[/tex]
Also,
[tex](x_1i+y_1j)-(x_2i+y_2j)=1.0(2.6i+5.6j) \\ \\ \Rightarrow(x_1-x_2)i+(y_1-y_2)j=2.6i+5.6j \\ \\ \Rightarrow x_1-x_2=2.6 \ . \ . \ . \ . \ . \ (3) \\ \\ \Rightarrow y_1-y_2=5.6 \ . \ . \ . \ . \ . \ (4)[/tex]
Part A:
Solving for (1) and (3), we have
[tex]x_1+x_2=13 \\ x_1-x_2=2.6 \\ \\ \Rightarrow2x_2=10.4 \\ \\ \Rightarrow x_2=5.2\\ \\ \Rightarrow x_1=7.8[/tex]
Therefore, the x-component of [tex]d_1[/tex] is 7.8
Part B
Solving for (2) and (4), we have
[tex]y_1+y_2=28 \\ y_1-y_2=5.6 \\ \\ \Rightarrow2y_2=22.4 \\ \\ \Rightarrow y_2=11.2 \\ \\ \Rightarrow y_1=16.8[/tex]
Therefore, the y-component of [tex]d_1[/tex] is 16.8
Part C
Solving for (1) and (3), we have
[tex]x_1+x_2=13 \\ x_1-x_2=2.6 \\ \\ \Rightarrow2x_2=10.4 \\ \\ \Rightarrow x_2=5.2\\ \\ \Rightarrow x_1=7.8[/tex]
Therefore, the x-component of [tex]d_2[/tex] is 5.2
Part D
Solving for (2) and (4), we have
[tex]y_1+y_2=28 \\ y_1-y_2=5.6 \\ \\ \Rightarrow2y_2=22.4 \\ \\ \Rightarrow y_2=11.2 \\ \\ \Rightarrow y_1=16.8[/tex]
Therefore, the y-component of [tex]d_2[/tex] is 11.2
[tex]\overrightarrow{d_1}+\overrightarrow{d_2}=5.0\overrightarrow{d_3}, \ and \\ \\ \overrightarrow{d_1}-\overrightarrow{d_2}=1.0\overrightarrow{d_3} [/tex]
Also, given that
[tex]\overrightarrow{d_3}=2.6i+5.6j[/tex]
Let
[tex]\overrightarrow{d_1}=x_1i+y_1j[/tex], and
[tex]\overrightarrow{d_2}=x_2i+y_2j[/tex], then
[tex]x_1i+y_1j+x_2i+y_2j=5.0(2.6i+5.6j) \\ \\ \Rightarrow(x_1+x_2)i+(y_1+y_2)j=13i+28j \\ \\ \Rightarrow x_1+x_2=13 \ . \ . \ . \ . \ . \ (1) \\ \\ \Rightarrow y_1+y_2=28 \ . \ . \ . \ . \ . \ (2)[/tex]
Also,
[tex](x_1i+y_1j)-(x_2i+y_2j)=1.0(2.6i+5.6j) \\ \\ \Rightarrow(x_1-x_2)i+(y_1-y_2)j=2.6i+5.6j \\ \\ \Rightarrow x_1-x_2=2.6 \ . \ . \ . \ . \ . \ (3) \\ \\ \Rightarrow y_1-y_2=5.6 \ . \ . \ . \ . \ . \ (4)[/tex]
Part A:
Solving for (1) and (3), we have
[tex]x_1+x_2=13 \\ x_1-x_2=2.6 \\ \\ \Rightarrow2x_2=10.4 \\ \\ \Rightarrow x_2=5.2\\ \\ \Rightarrow x_1=7.8[/tex]
Therefore, the x-component of [tex]d_1[/tex] is 7.8
Part B
Solving for (2) and (4), we have
[tex]y_1+y_2=28 \\ y_1-y_2=5.6 \\ \\ \Rightarrow2y_2=22.4 \\ \\ \Rightarrow y_2=11.2 \\ \\ \Rightarrow y_1=16.8[/tex]
Therefore, the y-component of [tex]d_1[/tex] is 16.8
Part C
Solving for (1) and (3), we have
[tex]x_1+x_2=13 \\ x_1-x_2=2.6 \\ \\ \Rightarrow2x_2=10.4 \\ \\ \Rightarrow x_2=5.2\\ \\ \Rightarrow x_1=7.8[/tex]
Therefore, the x-component of [tex]d_2[/tex] is 5.2
Part D
Solving for (2) and (4), we have
[tex]y_1+y_2=28 \\ y_1-y_2=5.6 \\ \\ \Rightarrow2y_2=22.4 \\ \\ \Rightarrow y_2=11.2 \\ \\ \Rightarrow y_1=16.8[/tex]
Therefore, the y-component of [tex]d_2[/tex] is 11.2