Respuesta :

Space

Answer:

[tex]\displaystyle \lim_{\theta \to 0} \frac{\cos (8\theta) - 1}{\sin (3\theta)} = 0[/tex]

General Formulas and Concepts:

Pre-Calculus

  • Unit Circle

Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Special Limit Rule [L’Hopital’s Rule]:                                                                     [tex]\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}[/tex]

Step-by-step explanation:

We are given the limit:

[tex]\displaystyle \lim_{\theta \to 0} \frac{\cos (8\theta) - 1}{\sin (3\theta)}[/tex]

If we evaluate the limit how it is using limit rules, we get:

[tex]\displaystyle \lim_{\theta \to 0} \frac{\cos (8\theta) - 1}{\sin (3\theta)} = \frac{0}{0}[/tex]

We see we have an indeterminate form, so let's use L'Hopital's Rule:

[tex]\displaystyle \lim_{\theta \to 0} \frac{\cos (8\theta) - 1}{\sin (3\theta)} = \lim_{\theta \to 0} \frac{-8\sin (8x)}{3\cos (3x)}[/tex]

Evaluating the new limit using limit rules, we get:

[tex]\displaystyle \lim_{\theta \to 0} \frac{-8\sin (8x)}{3\cos (3x)} = \frac{-8\sin(0)}{3\cos(0)}[/tex]

Which simplifies to:

[tex]\displaystyle \lim_{\theta \to 0} \frac{-8\sin (8x)}{3\cos (3x)} = 0[/tex]

And we have our answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits