Respuesta :

We are dividing [tex]3x^2-2x+7[/tex] by (x+1).

According to the "Division algorithm":

P(x)=D(x)*Q(x)+R(x), 

where P(x) is the dividend polynomial, D(x) is the divisor polynomial, Q(x) is the quotient polynomial and R(x) the remainder which must be of smaller degree than the divisor.


so
[tex]3x^2-2x+7=(x + 1)Q(x)+c[/tex]

R(x)=c, a constant, because the divisor is a linear.

also notice that Q(x) must be a linear of the form 3x+a:


[tex]3x^2-2x+7=(x + 1)(3x+a)+c\\\\3x^2-2x+7=3x^2+ax+3x+a+c\\\\3x^2-2x+7=3x^2+(a+3)x+(a+c)[/tex]


comparing the coefficients, we have:

-2=a+3                and           7=a+c

a=-5,           then     7=-5+c, so c=-12




Answer: the quotient is 3x-5


Answer:

The answer on edgen is B

Step-by-step explanation: