Answer:Therefore, x≈−0.394x≈−0.394rad and y≈πy≈πrad.
Step-by-step explanation:
To find the value of xxand yy, we can use the given trigonometric ratios and their corresponding trigonometric functions.Given:sin(x)=−513sin(x)=−135 where π≤x≤3π2π≤x≤23πcos(y)=−45cos(y)=−54 where π2≤y≤π2π≤y≤πLet's find the values of xxand yyusing inverse trigonometric functions:For xx: sin−1(−513)=xsin−1(−135)=xx≈−0.394 radx≈−0.394 radSince π≤x≤3π2π≤x≤23π, the value of xxfalls within the given range.For yy: cos−1(−45)=ycos−1(−54)=yy≈πy≈πSince π2≤y≤π2π≤y≤π, the value of yyfalls within the given range.Therefore, x≈−0.394x≈−0.394rad and y≈πy≈πrad.