Answer:
(1, 1)
Step-by-step explanation:
The formula for the coordinates of the centroid of a triangle is:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Centroid of a triangle}}\\\\\left(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\right)\\\\\textsf{where $A(x_1, y_1), B(x_2, y_2)$, and $C(x_3, y_3)$ are the vertices of the triangle.}\end{array}}[/tex]
In this case, the coordinates of the vertices of triangle RST are:
Substitute the coordinates of vertices R, S and T into the centroid formula:
[tex]\textsf{Centroid}=\left(\dfrac{x_R + x_S + x_T}{3}, \dfrac{y_R + y_S + y_T}{3}\right)\\\\\\\textsf{Centroid}=\left(\dfrac{-4 + 5 + 2}{3}, \dfrac{5+1+(-3)}{3}\right)\\\\\\\textsf{Centroid}=\left(\dfrac{3}{3}, \dfrac{3}{3}\right)\\\\\\\textsf{Centroid}=\left(1,1\right)[/tex]
Therefore, the coordinates of the centroid of ΔRST are:
[tex]\LARGE\boxed{\boxed{(1,1)}}[/tex]