Respuesta :

Answer:

[tex]\frac{1}{4}[/tex] ([tex]\sqrt{2}[/tex] - [tex]\sqrt{6}[/tex] )

Step-by-step explanation:

using the identity

• sin(x - y) = sin x cos y - cos xsin y

and the exact values

sin45° = cos45° = [tex]\frac{\sqrt{2} }{2}[/tex] , sin30° = [tex]\frac{1}{2}[/tex] , cos30° =  [tex]\frac{\sqrt{3} }{2}[/tex]

given

sin(- 15)°

= sin(30 - 45)°

= sin30°cos45° - cos30°sin45°

= [tex]\frac{1}{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex] - [tex]\frac{\sqrt{3} }{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex]

= [tex]\frac{\sqrt{2} }{4}[/tex] - [tex]\frac{\sqrt{6} }{4}[/tex]

= [tex]\frac{1}{4}[/tex] ([tex]\sqrt{2}[/tex] - [tex]\sqrt{6}[/tex] )